This project will develop technologies to improve the integration of ligand and protein data for structure-based prediction of protein-ligand selectivity and polypharmacology.
The project will use KNIME Analytics Platform to integrate the different technologies and datasets.
To install 3D-e-Chem KNIME nodes use the community contributions software site.
3D-e-Chem partners and collaborators:
- VU Medicinal Chemistry
- CMBI Radboud University
- Netherlands eScience Center
- University of Copenhagen
- Heptares Therapeutics
- GPCR Consortium
- GPCRdb
- ONCORNET
Latest news
read moreRepositories
-
3D-e-Chem-VM
Shell
Virtual machine with all software and sample data to run 3D-e-Chem KNIME workflows
-
knime-gpcrdb
Java
GPCRDB nodes for KNIME
-
knime-klifs
Java
KNIME plugin for retrieving data from KLIFS. KLIFS is a structural kinase-ligand interaction database.
-
knime-kripodb
Java
KNIME nodes for KripoDB Python package
-
knime-modified-tanimoto
Java
KNIME plugin for calculating distance of bitvector using Modifed Tanimoto similarity index
-
knime-molviewer
Java
KNIME node which launches a web browser with a molecule viewer
-
knime-pharmacophore
Java
KNIME nodes to align, read and write pharmacophores
-
knime-plants
Java
KNIME nodes to configure, run and analyze PLANTS protein-ligand docking
-
knime-python-node-archetype
Java
Maven archetype to generate KNIME workflow Python node skeleton repository with sample code.
-
knime-python-wrapper
Java
Utilities for development of KNIME nodes calling Python scripts.
-
knime-silicos-it
Java
KNIME nodes to run Silicos-it software like align-it and shape-it.
-
knime-sstea
Java
KNIME node to calculate subfamily specific two entropy analysis (ss-TEA) score.
-
knime-sygma
Java
SyGMa KNIME nodes for the Systematic Generation of potential Metabolites.
-
knime-testflow
Java
Test KNIME workflows from a Junit test
-
kripodb
Python
Generator of Kripo fingerprints from PDB files
-
kripodb
Python
Library to interact with Kripo fragment, fingerprint and similarity data files.
-
rdkit-react
Python
Script to perform reactions on molecules using RDKIT
-
snooker-alignment
Python
Scripts to generate a GPCR multiple sequence alignment
-
SyGMa
Python
SyGMa is a python library for the Systematic Generation of potential Metabolites.
-
tycho-knime-node-archetype
Java
Maven archetype to generate KNIME workflow node skeleton repository with sample code.
-
workflows
KNIME
KNIME workflows developed in project using nodes developed in project.
Publications
- Vass, M., Kooistra, A. J., Yang, D., Stevens, R. C., Wang, M.-W., & de Graaf, C. (2018). Chemical Diversity in the G Protein-Coupled Receptor Superfamily. Trends in Pharmacological Sciences, 39(5), 494–512. doi:10.1016/j.tips.2018.02.004
- Kooistra, A. J., Vass, M., McGuire, R., Leurs, R., de Esch, I. J. P., Vriend, G., … de Graaf, C. (2018). 3D-e-Chem: Structural Cheminformatics Workflows for Computer-Aided Drug Discovery. ChemMedChem, 13(6), 614–626. doi:10.1002/cmdc.201700754
- Vass, M., Kooistra, A. J., Verhoeven, S., Gloriam, D., de Esch, I. J. P., & de Graaf, C. (2017). A Structural Framework for GPCR Chemogenomics: What’s In a Residue Number? Computational Methods for GPCR Drug Discovery, 73–113. doi:10.1007/978-1-4939-7465-8_4
- McGuire, R., Verhoeven, S., Vass, M., Vriend, G., de Esch, I. J. P., Lusher, S. J., … de Graaf, C. (2017). 3D-e-Chem-VM: Structural Cheminformatics Research Infrastructure in a Freely Available Virtual Machine. Journal of Chemical Information and Modeling, 57(2), 115–121. doi:10.1021/acs.jcim.6b00686
- Vass, M., Kooistra, A. J., Ritschel, T., Leurs, R., de Esch, I. J., & de Graaf, C. (2016). Molecular interaction fingerprint approaches for GPCR drug discovery. Current Opinion in Pharmacology, 30, 59–68. doi:10.1016/j.coph.2016.07.007
- Kooistra, A. J., Vischer, H. F., McNaught-Flores, D., Leurs, R., de Esch, I. J. P., & de Graaf, C. (2016). Function-specific virtual screening for GPCR ligands using a combined scoring method. Scientific Reports, 6(1). doi:10.1038/srep28288
- Kooistra, A. J., Kanev, G. K., van Linden, O. P. J., Leurs, R., de Esch, I. J. P., & de Graaf, C. (2015). KLIFS: a structural kinase-ligand interaction database. Nucleic Acids Research, 44(D1), D365–D371. doi:10.1093/nar/gkv1082
Data sets
- Vass, Marton, Podlewska, Sabina, Kooistra, Albert, Kuhne, Sebastiaan, Racz, Anita, Leurs, Rob, de Esch, Iwan, Bojarski, Andrzej, de Graaf, Chris. (2016). Aminergic G protein-coupled receptor (GPCR) mutation data set. Zenodo. http://doi.org/10.5281/zenodo.58104
- Arimont, Marta, Sun, Shanliang, Vass, Marton, Smit, Martine, Leurs, Rob, de Esch, Iwan, de Graaf, Chris. (2016). Chemokine G protein-coupled receptor (GPCR) mutation data set. Zenodo. http://doi.org/10.5281/zenodo.58160
Dissemination
Tutorials
Posters
- Verhoeven, Stefan, Vass, Marton, de Esch, Iwan, Leurs, Rob, Lusher, Scott, Vriend, Gerrit, Ritschel, Tina, de Graaf, Chris, McGuire, Ross. (2016). 3D-e-Chem VM: Cheminformatics Research Infrastructure in a Downloadable Virtual Machine. Zenodo. http://doi.org/10.5281/zenodo.47208
- Vass, Marton, Verhoeven, Stefan, McGuire, Ross, Kooistra, Albert J., Ridder, Lars, Ritschel, Tina, de Esch, Iwan, Leurs, Rob, Vriend, Gerrit, de Graaf, Chris. (2016). 3D-e-Chem-VM: Cheminformatics Toolbox in a freely available Virtual Machine. Zenodo. http://doi.org/10.5281/zenodo.161567